2024年中考数学一元一次方程解决应用题的分类(2)
中考网整理了关于2024年中考数学一元一次方程解决应用题的分类(2),希望对同学们有所帮助,仅供参考。
2.方案选择问题
(一)例题解析
1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
解:方案一:获利140 4500=630000(元)
方案二:获利15 6 7500+(140-15 6) 1000=725000(元)
方案三:设精加工x吨,则粗加工(140-x)吨
依题意得 =15 解得x=60
获利60 7500+(140-60) 4500=810000(元)
因为第三种获利最多,所以应选择方案三。
2.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
(1)某户八月份用电84千瓦时,共交电费30.72元,求a
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?
解:(1)由题意,得0.4a+(84-a) 0.40 70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则 0.40 60+(x-60) 0.40 70%=0.36x 解得x=90
所以0.36 90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元。
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案。
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台。
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000
即5x+7(50-x)=300 2x=50 x=25 50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利 150 25+250 15=8
750
若选择(1)中的方案②,可获利 150 35+250 15=9000
9000 8750 故为了获利最多,选择第二种方案。 相关推荐:
2024年全国各省市中考报名时间汇总
2024年全国各地中考体育考试方案汇总
2024年全国各省市中考时间汇总 关注中考网微信公众号 每日推送中考知识点,应试技巧 助你迎接2024年中考! 中考成绩查询 中考分数线 2024中考 www.99yikao.com 中考百科报考:中考资讯 中考政策 中考体育 志愿填报资源检索:2024中考真题 中考满分作文 中考英语作文 www.99zihua.cn
2.方案选择问题
(一)例题解析
1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
解:方案一:获利140 4500=630000(元)
方案二:获利15 6 7500+(140-15 6) 1000=725000(元)
方案三:设精加工x吨,则粗加工(140-x)吨
依题意得 =15 解得x=60
获利60 7500+(140-60) 4500=810000(元)
因为第三种获利最多,所以应选择方案三。
2.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
(1)某户八月份用电84千瓦时,共交电费30.72元,求a
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?
解:(1)由题意,得0.4a+(84-a) 0.40 70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则 0.40 60+(x-60) 0.40 70%=0.36x 解得x=90
所以0.36 90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元。
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案。
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台。
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000
即5x+7(50-x)=300 2x=50 x=25 50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利 150 25+250 15=8
750
若选择(1)中的方案②,可获利 150 35+250 15=9000
9000 8750 故为了获利最多,选择第二种方案。 相关推荐:
2024年全国各省市中考报名时间汇总
2024年全国各地中考体育考试方案汇总
2024年全国各省市中考时间汇总 关注中考网微信公众号 每日推送中考知识点,应试技巧 助你迎接2024年中考! 中考成绩查询 中考分数线 2024中考 www.99yikao.com 中考百科报考:中考资讯 中考政策 中考体育 志愿填报资源检索:2024中考真题 中考满分作文 中考英语作文 www.99zihua.cn
初中数学有理数难点:阅读理解型问题
初中数学有理数考点:数轴上两点间的距离
www.99zihua.cn
初中数学有理数难点:有理数的加减与相反数、绝对值的综合
初中数学有理数难点:动点问题
初中数学有理数难点:位置与路程
初中数学有理数难点:距离问题
www.99yikao.com
初中数学有理数难点:规律问题
初中数学:有理数考点与难点易错点
初中数学:有理数详细知识点
初中·数学 有理数的乘除法
www.gaokao2024.com
初中数学有理数计算错点
初中数学:有理数的加减法练习题及答案
初中数学基础:有理数混合运算知识点与计算技巧
初一数学:有理数运算常用的技巧与方法
初中数学题型汇总:有理数的计算技巧方法(二)
http://m.99zihua.cn/a/214524.html 2024年中考数学一元一次方程解决应用题的分类(2) 中考数学联系方式
客服QQ:
1067845683
。
客服电话:
。
评论